
1

High-Performance IT

Applications

Development Health

Check

Applications Development Assessment

2

Applications Development

Development

The Best practice IT Standard:

The Best practice IT Standard is comprised of:

1. A thoroughly documented and tailored where appropriate, development lifecycle

methodology. (Systems Development Lifecycles-SDLC) with associated how-to

guidelines and procedures.

2. A vendor supported, integrated applications development toolset.

3. Development and test databases refreshed daily.

4. As the applications portfolio is usually a mix of packaged solutions and in-house

developments, both require thorough documentation, especially legacy

applications.

5. Development work like enhancements requires rigorous functional gap analysis

and review of business processes before work is undertaken.

6. The use of scripts is minimised as they tend to organically grow which makes

them problematic and requiring manual intervention to run.

Performance Health Check

Testing

1. What is the approach to testing?

2. Does the testing approach cover people (numbers and skills), capacity, software

and tools, overall technical environment, processes (e.g., function test,

performance and load test, problem reporting, management and fixing), and the

user functions?

3. Does testing cover off usability, reliability, functionality, and performance versus

the documented requirements.

4. How is testing planned and documented?

5. How are test statements planned and documented?

6. Do test plans include component tests, integration test, regression tests, system

test and acceptance test.

7. How are acceptance criteria for the system deliverables defined?

Quality Assurance

1. What quality management tools and techniques are in use?

2. How is quality assurance integrated with sub-contractors?

Applications Development Assessment

3

Conversion

1. What format do the conversion strategies take?

2. Are conversion rules, programs and final data file definitions defined?

3. How is the original environment described?

4. What if any conversion tools are in use?

5. Are conversion and integrated acceptance test plans defined?

6. How is the clean-up of converted data defined?

7. How is a newly converted system compared with the original to assess identical

results?

8. What data integrity issues exist?

Sample Task list

1. Create an end-to-end testing process including the use of test harnesses, scripts

and conditions.

2. Review the use of and management of development and testing environments.

3. Review recent application failures (unusable to users), assess cause and ensure

mitigations been put in place.

4. Introduce a Rule of ‘fix a problem once’.

5. Split DBAs into Systems and Applications.

6. Locate application DBAs with developers.

7. Create any necessary umbrella processes that involve inter-team workflows

including hand-off points and deliverables.

8. Pending how often conversions are undertaken, consider creating a conversions

process that includes sub-contractors.

9. Determine extent of data integrity issues and how to resolve.

10. Define and agree a test environment.

11. investigate QA toolsets.

12. Determine further works required and scope out.

13. Breakdown the scope of works to task level, ready for loading into the change

management project schedule.

Methodologies

The Best practice IT Standard:

Is that applications development methodologies are guiding all development activities,

there are five primary types:

1. The waterfall model: - this is the classic SDLC model, with a sequential process

that has goals for each applications development phase. The waterfall model

Applications Development Assessment

4

simplifies task scheduling because it is linear with no iterative or overlapping

tasks.

2. Rapid application development (RAD): - based on the approach that solutions can

be developed more quickly using development workshops to collect system

requirements. Makes use of prototyping and reiterative design testing.

3. Joint application development (JAD): - this model involves the client or end-user in

the design and construction of an application through a series of collaborative

workshops.

4. Prototyping: - in this model, a prototype (an early approximation of a final system

or product) is built, tested, and then reworked as necessary until an acceptable

prototype is finally achieved from which the complete system or product can now

be developed.

5. Synchronize-and-stabilize: - this approach calls for different development teams

working in parallel on different parts of an application. Requires regular

synchronization of code.

Performance Health Check

1. How often are development databases refreshed from production databases?

2. Are the methodologies in use tailored?

3. What methodology how-to guidelines exists?

4. Are there matching Work Breakdown Schedule templates in use?

5. What is project delivery performance like (timely delivery of all software developed

by (and subcontractors) to defined acceptance criteria (i.e. on schedule, within

budget, with required function, with required performance and to the specified

quality)?

6. Is there an agreed and documented procedure for interfacing with

subcontractors?

7. How are subcontractors advised of in-house development standards?

8. Are regular performance reviews of progress including monitoring actual versus

plan on a task and effort basis conducted with sub-contractors?

9. Is Quality Assurance involved in code inspections?

10. Is there a clear and unambiguous view of the overall application architecture and,

is this conveyed to subcontractors?

11. Is a close and continual liaison with the technical architect maintained to ensure

that all matters potentially affecting system capacity and performance are

communicated and understood?

12. How are applications security requirements managed?

Sample Task list

1. Review software licenses.

2. Risk analysis of in-use methodologies.

Applications Development Assessment

5

3. Assess methodologies fit for purpose.

4. Document in-house methodologies and customisations to packaged

methodologies.

5. Determine further works required and scope out.

6. Breakdown the scope of works to task level, ready for loading into the change

management project schedule.

Releases vs Projects

The more complex the design, the bigger the project. But as projects get bigger the risk of

failure increases geometrically while the likelihood of substantial delay approaches

certainty. Releases bundle discrete enhancements for regression, stress testing, and

deployment. Relying on releases instead of projects lets you take advantage of one of the

most reliable heuristics of IT management: Enhancements succeed, projects often fail.

Organizing development work into releases still creates delay. Typical scrum sprints are a

month in duration, which establishes a monthly pace for business change, not including

having to wait for the critical Change Advisory Board (CAB) meeting).

Favouring Interfaces over Integration

New functionality creates new value. But in most IT shops, new functionality takes a

backseat to making sure a software change doesn’t break the company’s spider web of

custom-programmed point-to-point batch interfaces. Clean up the Interface tangle with a

well-engineered integration system which results in project teams speeding up, testing

taking less time, and deployments going more smoothly.

Insisting on 100 percent solutions

IT’s instinct is to bulletproof everything. But coding for a case that hits the system once

every thousand transactions takes as long as coding for a case that occurs hundreds of

times a day. Take a lesson from the ancient days of IT: Program the main cases and kick

out the rest as exceptions for manual processing. Computers are good at main cases.

Humans are good at exceptions.

Creating Data Warehouses

Pick two words to describe the typical data warehouse project and it would likely be

‘behind schedule.’ Data warehouses are still chronically late due to the difficulty of

designing OLAP data structures optimized to answer questions nobody knows they’re

going to want to ask. Enter NoSQL. What makes NoSQL interesting isn’t only its ability to

Applications Development Assessment

6

handle large data volumes. Even more valuable is its ability to accept data now and let

analysts figure out its organization later, when the time comes to query it.

Copyright © 2022 Russell W Futcher. All rights reserved. 29/3/22

	Applications Development
	Development
	The Best practice IT Standard:
	Performance Health Check
	Testing
	Quality Assurance
	Conversion

	Sample Task list

	Methodologies
	The Best practice IT Standard:
	Performance Health Check
	Sample Task list

	Releases vs Projects
	Favouring Interfaces over Integration
	Insisting on 100 percent solutions
	Creating Data Warehouses

